Sparse Additive Subspace Clustering (Supplement)
نویسندگان
چکیده
منابع مشابه
Sparse Additive Subspace Clustering
In this paper, we introduce and investigate a sparse additive model for subspace clustering problems. Our approach, named SASC (Sparse Additive Subspace Clustering), is essentially a functional extension of the Sparse Subspace Clustering (SSC) of Elhamifar & Vidal [7] to the additive nonparametric setting. To make our model computationally tractable, we express SASC in terms of a finite set of ...
متن کاملSubspace Clustering Reloaded: Sparse vs. Dense Representations
State-of-the-art methods for learning unions of subspaces from a collection of data leverage sparsity to form representations of each vector in the dataset with respect to the remaining vectors in the dataset. The resulting sparse representations can be used to form a subspace affinity matrix to cluster the data into their respective subspaces. While sparsity-driven methods for subspace cluster...
متن کاملGeometric Conditions for Subspace-Sparse Recovery
Given a dictionary Π and a signal ξ = Πx generated by a few linearly independent columns of Π, classical sparse recovery theory deals with the problem of uniquely recovering the sparse representation x of ξ. In this work, we consider the more general case where ξ lies in a lowdimensional subspace spanned by a few columns of Π, which are possibly linearly dependent. In this case, x may not uniqu...
متن کاملSparse Subspace Clustering with Missing Entries
We consider the problem of clustering incomplete data drawn from a union of subspaces. Classical subspace clustering methods are not applicable to this problem because the data are incomplete, while classical low-rank matrix completion methods may not be applicable because data in multiple subspaces may not be low rank. This paper proposes and evaluates two new approaches for subspace clusterin...
متن کاملA Deterministic Analysis of Noisy Sparse Subspace Clustering for Dimensionality-reduced Data
Subspace clustering groups data into several lowrank subspaces. In this paper, we propose a theoretical framework to analyze a popular optimization-based algorithm, Sparse Subspace Clustering (SSC), when the data dimension is compressed via some random projection algorithms. We show SSC provably succeeds if the random projection is a subspace embedding, which includes random Gaussian projection...
متن کامل